MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 6065 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
4.5 to 11
Fatigue Strength, MPa 220
96 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
190 to 230
Tensile Strength: Ultimate (UTS), MPa 570
310 to 400
Tensile Strength: Yield (Proof), MPa 240
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 6.8
8.4
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 140
540 to 1040
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 19
31 to 40
Strength to Weight: Bending, points 19
36 to 43
Thermal Shock Resistance, points 13
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0 to 0.15
Copper (Cu), % 0 to 0.7
0.15 to 0.4
Iron (Fe), % 30.2 to 42.3
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15