MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 7005 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
10 to 20
Fatigue Strength, MPa 220
100 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
120 to 230
Tensile Strength: Ultimate (UTS), MPa 570
200 to 400
Tensile Strength: Yield (Proof), MPa 240
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 6.8
8.3
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 140
65 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 19
19 to 38
Strength to Weight: Bending, points 19
26 to 41
Thermal Shock Resistance, points 13
8.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0.060 to 0.2
Copper (Cu), % 0 to 0.7
0 to 0.1
Iron (Fe), % 30.2 to 42.3
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.010 to 0.060
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.15