MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 713.0 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 46
3.9 to 4.3
Fatigue Strength, MPa 220
63 to 120
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
27
Shear Strength, MPa 400
180
Tensile Strength: Ultimate (UTS), MPa 570
240 to 260
Tensile Strength: Yield (Proof), MPa 240
170

Thermal Properties

Latent Heat of Fusion, J/g 310
370
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
860
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 6.8
7.8
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 19
22 to 23
Strength to Weight: Bending, points 19
28 to 29
Thermal Shock Resistance, points 13
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0 to 0.35
Copper (Cu), % 0 to 0.7
0.4 to 1.0
Iron (Fe), % 30.2 to 42.3
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.6
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25