MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. N07773 Nickel

N08135 stainless steel belongs to the iron alloys classification, while N07773 nickel belongs to the nickel alloys. They have 79% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is N07773 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
40
Fatigue Strength, MPa 220
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
77
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 570
710
Tensile Strength: Yield (Proof), MPa 240
270

Thermal Properties

Latent Heat of Fusion, J/g 310
320
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1440
1510
Melting Onset (Solidus), °C 1390
1460
Specific Heat Capacity, J/kg-K 460
450
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
75
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 6.8
13
Embodied Energy, MJ/kg 94
180
Embodied Water, L/kg 220
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 19
21
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20.5 to 23.5
18 to 27
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 30.2 to 42.3
0 to 32
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
2.5 to 5.5
Nickel (Ni), % 33 to 38
45 to 60
Niobium (Nb), % 0
2.5 to 6.0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 2.0
Tungsten (W), % 0.2 to 0.8
0 to 6.0