MakeItFrom.com
Menu (ESC)

N08320 Stainless Steel vs. EN 1.4539 Stainless Steel

Both N08320 stainless steel and EN 1.4539 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08320 stainless steel and the bottom bar is EN 1.4539 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
38
Fatigue Strength, MPa 190
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
79
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 580
630
Tensile Strength: Yield (Proof), MPa 220
260

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 430
420
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1350
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 4.9
5.7
Embodied Energy, MJ/kg 69
78
Embodied Water, L/kg 200
200

Common Calculations

PREN (Pitting Resistance) 22
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.3
3.2
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.020
Chromium (Cr), % 21 to 23
19 to 21
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 40.4 to 50
43.1 to 51.8
Manganese (Mn), % 0 to 2.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 25 to 27
24 to 26
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010