MakeItFrom.com
Menu (ESC)

N08320 Stainless Steel vs. CC765S Brass

N08320 stainless steel belongs to the iron alloys classification, while CC765S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08320 stainless steel and the bottom bar is CC765S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
130
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
21
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 580
540
Tensile Strength: Yield (Proof), MPa 220
220

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1400
860
Melting Onset (Solidus), °C 1350
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
91
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
34

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 4.9
3.0
Embodied Energy, MJ/kg 69
51
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
90
Resilience: Unit (Modulus of Resilience), kJ/m3 120
220
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.3
28
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
51 to 65
Iron (Fe), % 40.4 to 50
0.5 to 2.0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 2.5
0.3 to 3.0
Nickel (Ni), % 25 to 27
0 to 6.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
19.8 to 47.7