MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. AISI 201L Stainless Steel

Both N08330 stainless steel and AISI 201L stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
22 to 46
Fatigue Strength, MPa 190
270 to 530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
520 to 660
Tensile Strength: Ultimate (UTS), MPa 550
740 to 1040
Tensile Strength: Yield (Proof), MPa 230
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 1050
880
Melting Completion (Liquidus), °C 1390
1410
Melting Onset (Solidus), °C 1340
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 77
38
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
27 to 37
Strength to Weight: Bending, points 18
24 to 30
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 13
16 to 23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 20
16 to 18
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 38.3 to 48.3
67.9 to 75
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
5.5 to 7.5
Nickel (Ni), % 34 to 37
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.75 to 1.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tin (Sn), % 0 to 0.025
0