MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. AISI 436 Stainless Steel

Both N08330 stainless steel and AISI 436 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 61% of their average alloy composition in common.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 190
190
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
77
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
320
Tensile Strength: Ultimate (UTS), MPa 550
500
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 1050
880
Melting Completion (Liquidus), °C 1390
1450
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 77
38
Embodied Water, L/kg 190
120

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.1
6.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 17 to 20
16 to 18
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 38.3 to 48.3
77.8 to 83.3
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 34 to 37
0
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.75 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tin (Sn), % 0 to 0.025
0