MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. AISI 440A Stainless Steel

Both N08330 stainless steel and AISI 440A stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
5.0 to 20
Fatigue Strength, MPa 190
270 to 790
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 550
730 to 1790
Tensile Strength: Yield (Proof), MPa 230
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 420
400
Maximum Temperature: Mechanical, °C 1050
760
Melting Completion (Liquidus), °C 1390
1480
Melting Onset (Solidus), °C 1340
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.2
Embodied Energy, MJ/kg 77
31
Embodied Water, L/kg 190
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
87 to 120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
26 to 65
Strength to Weight: Bending, points 18
23 to 43
Thermal Diffusivity, mm2/s 3.1
6.2
Thermal Shock Resistance, points 13
26 to 65

Alloy Composition

Carbon (C), % 0 to 0.080
0.6 to 0.75
Chromium (Cr), % 17 to 20
16 to 18
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 38.3 to 48.3
78.4 to 83.4
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.75 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tin (Sn), % 0 to 0.025
0