MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C21000 Brass

N08330 stainless steel belongs to the iron alloys classification, while C21000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.9 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 80
36 to 73
Shear Modulus, GPa 76
43
Shear Strength, MPa 360
180 to 280
Tensile Strength: Ultimate (UTS), MPa 550
240 to 450
Tensile Strength: Yield (Proof), MPa 230
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1050
190
Melting Completion (Liquidus), °C 1390
1070
Melting Onset (Solidus), °C 1340
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
57

Otherwise Unclassified Properties

Base Metal Price, % relative 32
30
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 77
42
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21 to 830
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
7.4 to 14
Strength to Weight: Bending, points 18
9.6 to 15
Thermal Diffusivity, mm2/s 3.1
69
Thermal Shock Resistance, points 13
8.1 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
94 to 96
Iron (Fe), % 38.3 to 48.3
0 to 0.050
Lead (Pb), % 0 to 0.0050
0 to 0.030
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2