MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C51900 Bronze

N08330 stainless steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
14 to 29
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 80
42 to 91
Shear Modulus, GPa 76
42
Shear Strength, MPa 360
320 to 370
Tensile Strength: Ultimate (UTS), MPa 550
380 to 620
Tensile Strength: Yield (Proof), MPa 230
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1390
1040
Melting Onset (Solidus), °C 1340
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
66
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.4
3.2
Embodied Energy, MJ/kg 77
51
Embodied Water, L/kg 190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
680 to 1450
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
12 to 19
Strength to Weight: Bending, points 18
13 to 18
Thermal Diffusivity, mm2/s 3.1
20
Thermal Shock Resistance, points 13
14 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
91.7 to 95
Iron (Fe), % 38.3 to 48.3
0 to 0.1
Lead (Pb), % 0 to 0.0050
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0.030 to 0.35
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5