MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C66700 Brass

N08330 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.0 to 58
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 80
57 to 93
Shear Modulus, GPa 76
41
Shear Strength, MPa 360
250 to 530
Tensile Strength: Ultimate (UTS), MPa 550
340 to 690
Tensile Strength: Yield (Proof), MPa 230
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1050
140
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1340
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
97
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
17
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
19

Otherwise Unclassified Properties

Base Metal Price, % relative 32
25
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 77
45
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
11 to 23
Strength to Weight: Bending, points 18
13 to 21
Thermal Diffusivity, mm2/s 3.1
30
Thermal Shock Resistance, points 13
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
68.5 to 71.5
Iron (Fe), % 38.3 to 48.3
0 to 0.1
Lead (Pb), % 0 to 0.0050
0 to 0.070
Manganese (Mn), % 0 to 2.0
0.8 to 1.5
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5