MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C84500 Brass

N08330 stainless steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 550
240
Tensile Strength: Yield (Proof), MPa 230
97

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1050
150
Melting Completion (Liquidus), °C 1390
980
Melting Onset (Solidus), °C 1340
840
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
28
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.4
2.9
Embodied Energy, MJ/kg 77
47
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
54
Resilience: Unit (Modulus of Resilience), kJ/m3 140
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
7.7
Strength to Weight: Bending, points 18
9.8
Thermal Diffusivity, mm2/s 3.1
23
Thermal Shock Resistance, points 13
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
77 to 79
Iron (Fe), % 38.3 to 48.3
0 to 0.4
Lead (Pb), % 0 to 0.0050
6.0 to 7.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0.75 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0 to 0.025
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7