MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C89320 Bronze

N08330 stainless steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 550
270
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1390
1050
Melting Onset (Solidus), °C 1340
930
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 12
56
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
15

Otherwise Unclassified Properties

Base Metal Price, % relative 32
37
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
3.5
Embodied Energy, MJ/kg 77
56
Embodied Water, L/kg 190
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
38
Resilience: Unit (Modulus of Resilience), kJ/m3 140
93
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
8.5
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 3.1
17
Thermal Shock Resistance, points 13
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
87 to 91
Iron (Fe), % 38.3 to 48.3
0 to 0.2
Lead (Pb), % 0 to 0.0050
0 to 0.090
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.3
Silicon (Si), % 0.75 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0 to 0.025
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5