MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. S82122 Stainless Steel

Both N08330 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 66% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 190
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 360
460
Tensile Strength: Ultimate (UTS), MPa 550
680
Tensile Strength: Yield (Proof), MPa 230
450

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 420
430
Maximum Temperature: Mechanical, °C 1050
990
Melting Completion (Liquidus), °C 1390
1420
Melting Onset (Solidus), °C 1340
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 77
37
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 19
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 13
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 20
20.5 to 21.5
Copper (Cu), % 0 to 1.0
0.5 to 1.5
Iron (Fe), % 38.3 to 48.3
68.9 to 75.4
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 34 to 37
1.5 to 2.5
Nitrogen (N), % 0
0.15 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.75 to 1.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.020
Tin (Sn), % 0 to 0.025
0