MakeItFrom.com
Menu (ESC)

N08367 Stainless Steel vs. 6101A Aluminum

N08367 stainless steel belongs to the iron alloys classification, while 6101A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08367 stainless steel and the bottom bar is 6101A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
11
Fatigue Strength, MPa 280
80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 490
130
Tensile Strength: Ultimate (UTS), MPa 740
220
Tensile Strength: Yield (Proof), MPa 350
190

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
630
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
180

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.2
8.3
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
24
Resilience: Unit (Modulus of Resilience), kJ/m3 290
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 22
30
Thermal Diffusivity, mm2/s 3.2
84
Thermal Shock Resistance, points 17
10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 41.4 to 50.3
0 to 0.4
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.1