MakeItFrom.com
Menu (ESC)

N08367 Stainless Steel vs. Grade 11 Titanium

N08367 stainless steel belongs to the iron alloys classification, while grade 11 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08367 stainless steel and the bottom bar is grade 11 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
29
Fatigue Strength, MPa 280
170
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
37
Shear Modulus, GPa 80
38
Shear Strength, MPa 490
200
Tensile Strength: Ultimate (UTS), MPa 740
310
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 12
22
Thermal Expansion, µm/m-K 15
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 6.2
47
Embodied Energy, MJ/kg 84
800
Embodied Water, L/kg 200
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
81
Resilience: Unit (Modulus of Resilience), kJ/m3 290
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.2
8.9
Thermal Shock Resistance, points 17
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0 to 0.75
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 41.4 to 50.3
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Nitrogen (N), % 0.18 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.88
Residuals, % 0
0 to 0.4