MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. C14200 Copper

N08700 stainless steel belongs to the iron alloys classification, while C14200 copper belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
8.0 to 45
Fatigue Strength, MPa 210
76 to 130
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 81
35 to 60
Shear Modulus, GPa 79
43
Shear Strength, MPa 410
150 to 200
Tensile Strength: Ultimate (UTS), MPa 620
220 to 370
Tensile Strength: Yield (Proof), MPa 270
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
190
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
45

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.0
2.6
Embodied Energy, MJ/kg 82
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 180
24 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
6.8 to 11
Strength to Weight: Bending, points 20
9.1 to 13
Thermal Diffusivity, mm2/s 3.5
56
Thermal Shock Resistance, points 14
7.9 to 13

Alloy Composition

Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.5
99.4 to 99.835
Iron (Fe), % 42 to 52.7
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0