MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. 7021 Aluminum

N08800 stainless steel belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 4.5 to 34
9.4
Fatigue Strength, MPa 150 to 390
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Shear Strength, MPa 340 to 580
270
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
460
Tensile Strength: Yield (Proof), MPa 190 to 830
390

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1360
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 5.3
8.3
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
41
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
1110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 18 to 35
44
Strength to Weight: Bending, points 18 to 28
45
Thermal Diffusivity, mm2/s 3.0
59
Thermal Shock Resistance, points 13 to 25
20

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
90.7 to 93.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0 to 0.050
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 39.5 to 50.7
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15