MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. A390.0 Aluminum

N08800 stainless steel belongs to the iron alloys classification, while A390.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is A390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
75
Elongation at Break, % 4.5 to 34
0.87 to 0.91
Fatigue Strength, MPa 150 to 390
70 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
190 to 290
Tensile Strength: Yield (Proof), MPa 190 to 830
190 to 290

Thermal Properties

Latent Heat of Fusion, J/g 300
640
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1360
480
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
67

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.3
7.3
Embodied Energy, MJ/kg 76
140
Embodied Water, L/kg 200
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
1.6 to 2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
240 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 18 to 35
19 to 30
Strength to Weight: Bending, points 18 to 28
27 to 36
Thermal Diffusivity, mm2/s 3.0
56
Thermal Shock Resistance, points 13 to 25
9.0 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
75.3 to 79.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
4.0 to 5.0
Iron (Fe), % 39.5 to 50.7
0 to 0.5
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2