MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. CC140C Copper

N08800 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.5 to 34
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
340
Tensile Strength: Yield (Proof), MPa 190 to 830
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
1100
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
310
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
77
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
78

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.3
2.6
Embodied Energy, MJ/kg 76
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
34
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 35
10
Strength to Weight: Bending, points 18 to 28
12
Thermal Diffusivity, mm2/s 3.0
89
Thermal Shock Resistance, points 13 to 25
12

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0.4 to 1.2
Copper (Cu), % 0 to 0.75
98.8 to 99.6
Iron (Fe), % 39.5 to 50.7
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0