MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. Grade 14 Titanium

N08800 stainless steel belongs to the iron alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5 to 34
23
Fatigue Strength, MPa 150 to 390
220
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 340 to 580
290
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
460
Tensile Strength: Yield (Proof), MPa 190 to 830
310

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1390
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 14
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 5.3
32
Embodied Energy, MJ/kg 76
520
Embodied Water, L/kg 200
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
93
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18 to 35
28
Strength to Weight: Bending, points 18 to 28
29
Thermal Diffusivity, mm2/s 3.0
8.5
Thermal Shock Resistance, points 13 to 25
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 39.5 to 50.7
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
98.4 to 99.56
Residuals, % 0
0 to 0.4