MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. Grade 20 Titanium

N08800 stainless steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.5 to 34
5.7 to 17
Fatigue Strength, MPa 150 to 390
550 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
47
Shear Strength, MPa 340 to 580
560 to 740
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
900 to 1270
Tensile Strength: Yield (Proof), MPa 190 to 830
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1390
1660
Melting Onset (Solidus), °C 1360
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Expansion, µm/m-K 14
9.6

Otherwise Unclassified Properties

Density, g/cm3 8.0
5.0
Embodied Carbon, kg CO2/kg material 5.3
52
Embodied Energy, MJ/kg 76
860
Embodied Water, L/kg 200
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 18 to 35
50 to 70
Strength to Weight: Bending, points 18 to 28
41 to 52
Thermal Shock Resistance, points 13 to 25
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
3.0 to 4.0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 19 to 23
5.5 to 6.5
Copper (Cu), % 0 to 0.75
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 39.5 to 50.7
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 30 to 35
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants