MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. C14500 Copper

N08800 stainless steel belongs to the iron alloys classification, while C14500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.5 to 34
12 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 340 to 580
150 to 190
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
220 to 330
Tensile Strength: Yield (Proof), MPa 190 to 830
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
1080
Melting Onset (Solidus), °C 1360
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
360
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
94
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.3
2.6
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
21 to 300
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 35
6.8 to 10
Strength to Weight: Bending, points 18 to 28
9.1 to 12
Thermal Diffusivity, mm2/s 3.0
100
Thermal Shock Resistance, points 13 to 25
8.0 to 12

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
99.2 to 99.596
Iron (Fe), % 39.5 to 50.7
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0.0040 to 0.012
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.4 to 0.7
Titanium (Ti), % 0.15 to 0.6
0