MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. C41500 Brass

N08800 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5 to 34
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 340 to 580
220 to 360
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
340 to 560
Tensile Strength: Yield (Proof), MPa 190 to 830
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 76
45
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 35
11 to 18
Strength to Weight: Bending, points 18 to 28
12 to 17
Thermal Diffusivity, mm2/s 3.0
37
Thermal Shock Resistance, points 13 to 25
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
89 to 93
Iron (Fe), % 39.5 to 50.7
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5