MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. C64800 Bronze

N08800 stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.5 to 34
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 340 to 580
380
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
640
Tensile Strength: Yield (Proof), MPa 190 to 830
630

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
65
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
66

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.3
2.7
Embodied Energy, MJ/kg 76
43
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
51
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 35
20
Strength to Weight: Bending, points 18 to 28
19
Thermal Diffusivity, mm2/s 3.0
75
Thermal Shock Resistance, points 13 to 25
23

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0 to 0.75
92.4 to 98.8
Iron (Fe), % 39.5 to 50.7
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0 to 0.5
Phosphorus (P), % 0 to 0.045
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5