MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. C83300 Brass

N08801 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 860
220
Tensile Strength: Yield (Proof), MPa 190
69

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1090
180
Melting Completion (Liquidus), °C 1390
1060
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
33

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 79
44
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
60
Resilience: Unit (Modulus of Resilience), kJ/m3 92
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 30
6.9
Strength to Weight: Bending, points 25
9.2
Thermal Diffusivity, mm2/s 3.3
48
Thermal Shock Resistance, points 20
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
92 to 94
Iron (Fe), % 39.5 to 50.3
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 0.75 to 1.5
0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7