MakeItFrom.com
Menu (ESC)

N08811 Stainless Steel vs. C92200 Bronze

N08811 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08811 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33
25
Fatigue Strength, MPa 150
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 510
280
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
990
Melting Onset (Solidus), °C 1360
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 12
70
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.3
3.2
Embodied Energy, MJ/kg 76
52
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 94
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
8.9
Strength to Weight: Bending, points 18
11
Thermal Diffusivity, mm2/s 3.0
21
Thermal Shock Resistance, points 13
9.9

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.060 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
86 to 90
Iron (Fe), % 39.5 to 50.6
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7