MakeItFrom.com
Menu (ESC)

N08925 Stainless Steel vs. Grade 6 Titanium

N08925 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08925 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 45
11
Fatigue Strength, MPa 310
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
39
Shear Strength, MPa 470
530
Tensile Strength: Ultimate (UTS), MPa 680
890
Tensile Strength: Yield (Proof), MPa 340
840

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1460
1580
Melting Onset (Solidus), °C 1410
1530
Specific Heat Capacity, J/kg-K 460
550
Thermal Conductivity, W/m-K 13
7.8
Thermal Expansion, µm/m-K 16
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 6.2
30
Embodied Energy, MJ/kg 84
480
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
92
Resilience: Unit (Modulus of Resilience), kJ/m3 280
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23
55
Strength to Weight: Bending, points 21
46
Thermal Diffusivity, mm2/s 3.5
3.2
Thermal Shock Resistance, points 15
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0.8 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 42.7 to 50.1
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.1 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4