MakeItFrom.com
Menu (ESC)

N08925 Stainless Steel vs. C23000 Brass

N08925 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08925 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
42
Shear Strength, MPa 470
220 to 340
Tensile Strength: Ultimate (UTS), MPa 680
280 to 590
Tensile Strength: Yield (Proof), MPa 340
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 13
160
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
39

Otherwise Unclassified Properties

Base Metal Price, % relative 33
28
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 84
43
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 280
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23
8.9 to 19
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 3.5
48
Thermal Shock Resistance, points 15
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0.8 to 1.5
84 to 86
Iron (Fe), % 42.7 to 50.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2