MakeItFrom.com
Menu (ESC)

R30035 Cobalt vs. C12600 Copper

R30035 cobalt belongs to the cobalt alloys classification, while C12600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30035 cobalt and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220 to 230
120
Elongation at Break, % 9.0 to 46
56
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84 to 89
56
Tensile Strength: Ultimate (UTS), MPa 900 to 1900
270
Tensile Strength: Yield (Proof), MPa 300 to 1650
69

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1320
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 100
30
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 410
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 320
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 5920
21
Stiffness to Weight: Axial, points 14 to 15
7.2
Stiffness to Weight: Bending, points 23 to 24
18
Strength to Weight: Axial, points 29 to 61
8.2
Strength to Weight: Bending, points 24 to 39
10
Thermal Diffusivity, mm2/s 3.0
39
Thermal Shock Resistance, points 23 to 46
9.5

Alloy Composition

Boron (B), % 0 to 0.015
0
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 29.1 to 39
0
Copper (Cu), % 0
99.5 to 99.8
Iron (Fe), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.15
0
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.015
0.2 to 0.4
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0