MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. EN AC-44000 Aluminum

R30155 cobalt belongs to the iron alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
51
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 34
7.3
Fatigue Strength, MPa 310
64
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 850
180
Tensile Strength: Yield (Proof), MPa 390
86

Thermal Properties

Latent Heat of Fusion, J/g 300
560
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.5
Embodied Carbon, kg CO2/kg material 9.7
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11
Resilience: Unit (Modulus of Resilience), kJ/m3 370
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
55
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 24
28
Thermal Diffusivity, mm2/s 3.2
61
Thermal Shock Resistance, points 21
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
87.1 to 90
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 24.3 to 36.2
0 to 0.19
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
10 to 11.8
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1