MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. EN AC-45100 Aluminum

R30155 cobalt belongs to the iron alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 34
1.0 to 2.8
Fatigue Strength, MPa 310
82 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 850
300 to 360
Tensile Strength: Yield (Proof), MPa 390
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 14
22

Otherwise Unclassified Properties

Base Metal Price, % relative 80
10
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.7
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 370
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 28
30 to 35
Strength to Weight: Bending, points 24
35 to 39
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 21
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 24.3 to 36.2
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 1.0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 0.1
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15