MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. EN AC-51100 Aluminum

R30155 cobalt belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
57
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
4.5
Fatigue Strength, MPa 310
58
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 850
160
Tensile Strength: Yield (Proof), MPa 390
80

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.7
8.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 370
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 3.2
53
Thermal Shock Resistance, points 21
7.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 24.3 to 36.2
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.45
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15