MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. C90300 Bronze

R30155 cobalt belongs to the iron alloys classification, while C90300 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
41
Tensile Strength: Ultimate (UTS), MPa 850
330
Tensile Strength: Yield (Proof), MPa 390
150

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
1000
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 12
75
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.7
3.4
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 300
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
59
Resilience: Unit (Modulus of Resilience), kJ/m3 370
110
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
11
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 3.2
23
Thermal Shock Resistance, points 21
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 24.3 to 36.2
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 1.0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tantalum (Ta), % 0.75 to 1.3
0
Tin (Sn), % 0
7.5 to 9.0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6