MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. C93400 Bronze

R30155 cobalt belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 34
9.1
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 81
38
Tensile Strength: Ultimate (UTS), MPa 850
270
Tensile Strength: Yield (Proof), MPa 390
150

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1470
950
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 450
350
Thermal Conductivity, W/m-K 12
58
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 80
32
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.7
3.3
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 300
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
21
Resilience: Unit (Modulus of Resilience), kJ/m3 370
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 28
8.3
Strength to Weight: Bending, points 24
10
Thermal Diffusivity, mm2/s 3.2
18
Thermal Shock Resistance, points 21
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 24.3 to 36.2
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 1.0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tantalum (Ta), % 0.75 to 1.3
0
Tin (Sn), % 0
7.0 to 9.0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0