MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.1203 Steel

Both R30556 alloy and EN 1.1203 steel are iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
12 to 15
Fatigue Strength, MPa 320
210 to 310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
72
Shear Strength, MPa 550
420 to 480
Tensile Strength: Ultimate (UTS), MPa 780
690 to 780
Tensile Strength: Yield (Proof), MPa 350
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
48
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.1
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 130
19
Embodied Water, L/kg 300
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 290
310 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
25 to 28
Strength to Weight: Bending, points 22
22 to 24
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 18
22 to 25

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0.52 to 0.6
Chromium (Cr), % 21 to 23
0 to 0.4
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
97.1 to 98.9
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.6 to 0.9
Molybdenum (Mo), % 2.5 to 4.0
0 to 0.1
Nickel (Ni), % 19 to 22.5
0 to 0.4
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0