MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.5501 Steel

Both R30556 alloy and EN 1.5501 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
12 to 17
Fatigue Strength, MPa 320
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
270 to 310
Tensile Strength: Ultimate (UTS), MPa 780
390 to 510
Tensile Strength: Yield (Proof), MPa 350
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 290
190 to 460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
14 to 18
Strength to Weight: Bending, points 22
15 to 18
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 18
11 to 15

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0.00080 to 0.0050
Carbon (C), % 0.050 to 0.15
0.13 to 0.16
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 20.4 to 38.2
98.4 to 99.269
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.6 to 0.8
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0