MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN AC-46400 Aluminum

R30556 alloy belongs to the iron alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.1 to 1.7
Fatigue Strength, MPa 320
75 to 85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 780
170 to 310
Tensile Strength: Yield (Proof), MPa 350
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
520
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
610
Melting Onset (Solidus), °C 1330
570
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 8.7
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 300
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 290
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 26
18 to 32
Strength to Weight: Bending, points 22
26 to 38
Thermal Diffusivity, mm2/s 2.9
55
Thermal Shock Resistance, points 18
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.1 to 0.5
85.4 to 90.5
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 20.4 to 38.2
0 to 0.8
Lanthanum (La), % 0.0050 to 0.1
0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0.5 to 2.0
0.15 to 0.55
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0 to 0.2
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
8.3 to 9.7
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.8
Residuals, % 0
0 to 0.25