MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. SAE-AISI 9254 Steel

Both R30556 alloy and SAE-AISI 9254 steel are iron alloys. Both are furnished in the annealed condition. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
20
Fatigue Strength, MPa 320
280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
72
Shear Strength, MPa 550
410
Tensile Strength: Ultimate (UTS), MPa 780
660
Tensile Strength: Yield (Proof), MPa 350
410

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1330
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
46
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.2
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 8.7
1.5
Embodied Energy, MJ/kg 130
20
Embodied Water, L/kg 300
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0.51 to 0.59
Chromium (Cr), % 21 to 23
0.6 to 0.8
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
96.1 to 97.1
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.6 to 0.8
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0.2 to 0.8
1.2 to 1.6
Sulfur (S), % 0 to 0.015
0 to 0.040
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0