MakeItFrom.com
Menu (ESC)

R56406 Titanium vs. C94400 Bronze

R56406 titanium belongs to the titanium alloys classification, while C94400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R56406 titanium and the bottom bar is C94400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 9.1
18
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 40
37
Tensile Strength: Ultimate (UTS), MPa 980
220
Tensile Strength: Yield (Proof), MPa 850
110

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 340
150
Melting Completion (Liquidus), °C 1610
940
Melting Onset (Solidus), °C 1560
790
Specific Heat Capacity, J/kg-K 560
350
Thermal Conductivity, W/m-K 7.1
52
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.5
9.1
Embodied Carbon, kg CO2/kg material 38
3.4
Embodied Energy, MJ/kg 610
54
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
33
Resilience: Unit (Modulus of Resilience), kJ/m3 3420
60
Stiffness to Weight: Axial, points 13
6.1
Stiffness to Weight: Bending, points 35
17
Strength to Weight: Axial, points 61
6.8
Strength to Weight: Bending, points 49
9.0
Thermal Diffusivity, mm2/s 2.8
17
Thermal Shock Resistance, points 69
8.3

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
76.1 to 84
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 0
9.0 to 12
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.8