MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. SAE-AISI 5140 Steel

R58150 titanium belongs to the titanium alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 13
12 to 29
Fatigue Strength, MPa 330
220 to 570
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 52
73
Shear Strength, MPa 470
360 to 600
Tensile Strength: Ultimate (UTS), MPa 770
560 to 970
Tensile Strength: Yield (Proof), MPa 550
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 320
420
Melting Completion (Liquidus), °C 1760
1460
Melting Onset (Solidus), °C 1700
1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 8.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 48
2.1
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 480
19
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
220 to 1880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 40
20 to 34
Strength to Weight: Bending, points 35
19 to 28
Thermal Shock Resistance, points 48
16 to 29

Alloy Composition

Carbon (C), % 0 to 0.1
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
97.3 to 98.1
Manganese (Mn), % 0
0.7 to 0.9
Molybdenum (Mo), % 14 to 16
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 83.5 to 86
0