MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. 1060 Aluminum

S13800 stainless steel belongs to the iron alloys classification, while 1060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is 1060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11 to 18
1.1 to 30
Fatigue Strength, MPa 410 to 870
15 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 610 to 1030
42 to 75
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
67 to 130
Tensile Strength: Yield (Proof), MPa 660 to 1580
17 to 110

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1410
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
230
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
210

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.3
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 140
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
0.57 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
2.1 to 89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 35 to 61
6.9 to 13
Strength to Weight: Bending, points 28 to 41
14 to 21
Thermal Diffusivity, mm2/s 4.3
96
Thermal Shock Resistance, points 33 to 58
3.0 to 5.6

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
99.6 to 100
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 73.6 to 77.3
0 to 0.35
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.2
0 to 0.030
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050