MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. C93400 Bronze

S13800 stainless steel belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11 to 18
9.1
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
38
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
270
Tensile Strength: Yield (Proof), MPa 660 to 1580
150

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 810
150
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 16
58
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.4
3.3
Embodied Energy, MJ/kg 46
54
Embodied Water, L/kg 140
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
21
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 35 to 61
8.3
Strength to Weight: Bending, points 28 to 41
10
Thermal Diffusivity, mm2/s 4.3
18
Thermal Shock Resistance, points 33 to 58
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.9 to 1.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 73.6 to 77.3
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0 to 1.0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.0080
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0