MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. AISI 405 Stainless Steel

Both S15500 stainless steel and AISI 405 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8 to 16
22
Fatigue Strength, MPa 350 to 650
130
Poisson's Ratio 0.28
0.28
Reduction in Area, % 17 to 40
51
Shear Modulus, GPa 75
76
Shear Strength, MPa 540 to 870
300
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
470
Tensile Strength: Yield (Proof), MPa 590 to 1310
200

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 820
820
Melting Completion (Liquidus), °C 1430
1530
Melting Onset (Solidus), °C 1380
1480
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 39
28
Embodied Water, L/kg 130
100

Common Calculations

PREN (Pitting Resistance) 15
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
84
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
17
Strength to Weight: Bending, points 26 to 37
17
Thermal Diffusivity, mm2/s 4.6
8.1
Thermal Shock Resistance, points 30 to 50
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 14 to 15.5
11.5 to 14.5
Copper (Cu), % 2.5 to 4.5
0
Iron (Fe), % 71.9 to 79.9
82.5 to 88.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 3.5 to 5.5
0 to 0.6
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030