MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN 1.4652 Stainless Steel

Both S15500 stainless steel and EN 1.4652 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 6.8 to 16
45
Fatigue Strength, MPa 350 to 650
450
Impact Strength: V-Notched Charpy, J 7.8 to 53
90
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
81
Shear Strength, MPa 540 to 870
610
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
880
Tensile Strength: Yield (Proof), MPa 590 to 1310
490

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 17
9.8
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.4
Embodied Energy, MJ/kg 39
87
Embodied Water, L/kg 130
220

Common Calculations

PREN (Pitting Resistance) 15
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
340
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
30
Strength to Weight: Bending, points 26 to 37
25
Thermal Diffusivity, mm2/s 4.6
2.6
Thermal Shock Resistance, points 30 to 50
20

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.020
Chromium (Cr), % 14 to 15.5
23 to 25
Copper (Cu), % 2.5 to 4.5
0.3 to 0.6
Iron (Fe), % 71.9 to 79.9
38.3 to 46.3
Manganese (Mn), % 0 to 1.0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 3.5 to 5.5
21 to 23
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050