MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN 1.5508 Steel

Both S15500 stainless steel and EN 1.5508 steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8 to 16
11 to 20
Fatigue Strength, MPa 350 to 650
210 to 320
Poisson's Ratio 0.28
0.29
Reduction in Area, % 17 to 40
62 to 74
Shear Modulus, GPa 75
73
Shear Strength, MPa 540 to 870
300 to 360
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
420 to 1460
Tensile Strength: Yield (Proof), MPa 590 to 1310
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 820
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
51
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 39
19
Embodied Water, L/kg 130
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
260 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 53
15 to 52
Strength to Weight: Bending, points 26 to 37
16 to 36
Thermal Diffusivity, mm2/s 4.6
14
Thermal Shock Resistance, points 30 to 50
12 to 43

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.070
0.2 to 0.25
Chromium (Cr), % 14 to 15.5
0 to 0.3
Copper (Cu), % 2.5 to 4.5
0 to 0.25
Iron (Fe), % 71.9 to 79.9
97.9 to 99.199
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025