MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. Titanium 15-3-3-3

S15500 stainless steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 6.8 to 16
5.7 to 8.0
Fatigue Strength, MPa 350 to 650
610 to 710
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
39
Shear Strength, MPa 540 to 870
660 to 810
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
1120 to 1390
Tensile Strength: Yield (Proof), MPa 590 to 1310
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 820
430
Melting Completion (Liquidus), °C 1430
1620
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
520
Thermal Conductivity, W/m-K 17
8.1
Thermal Expansion, µm/m-K 11
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 2.7
59
Embodied Energy, MJ/kg 39
950
Embodied Water, L/kg 130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
78 to 89
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 32 to 53
64 to 80
Strength to Weight: Bending, points 26 to 37
50 to 57
Thermal Diffusivity, mm2/s 4.6
3.2
Thermal Shock Resistance, points 30 to 50
79 to 98

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.070
0 to 0.050
Chromium (Cr), % 14 to 15.5
2.5 to 3.5
Copper (Cu), % 2.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 71.9 to 79.9
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4