MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C12500 Copper

S15500 stainless steel belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 540 to 870
150 to 220
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
220 to 420
Tensile Strength: Yield (Proof), MPa 590 to 1310
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 820
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
350
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
92
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
93

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
41
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
24 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 53
6.9 to 13
Strength to Weight: Bending, points 26 to 37
9.1 to 14
Thermal Diffusivity, mm2/s 4.6
100
Thermal Shock Resistance, points 30 to 50
7.8 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
99.88 to 100
Iron (Fe), % 71.9 to 79.9
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0 to 0.025
Residuals, % 0
0 to 0.3