MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C23000 Brass

S15500 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 540 to 870
220 to 340
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
280 to 590
Tensile Strength: Yield (Proof), MPa 590 to 1310
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
39

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
8.9 to 19
Strength to Weight: Bending, points 26 to 37
11 to 18
Thermal Diffusivity, mm2/s 4.6
48
Thermal Shock Resistance, points 30 to 50
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
84 to 86
Iron (Fe), % 71.9 to 79.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2